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METHOD OF DISCRETE SOURCES FOR ELLIPTIC PROBLEMS
ARISING IN SUPERCOLLIDER SIMULATION

An electrodynamical system of energy accumulation (accelerating section of a supercollider) is synthe-
sized. Some model elliptic problems (boundary, inverse spectral, scattering) concerning synthesis of the
optimal structure are considered. Numerical algorithms basing on the method of discrete sources and singular
value decomposition technique are developed. Numerical examples are presented.

Introduction.

Electron (positron) accelerating structures are attractive to be fed with a wave flow
converging onto the structure axis [1]. A proper structure might represent a periodic set of
coaxial radial-corrugated discs which compose a Bragg reflection cavity [2| (Fig. 1). The
principal problem is to optimize parameters of the electrodynamical system considered.
The aim is to accumulate minimum of the RF energy in a paraxial domain under a given
accelerating gradient (the value of the electronsynchronous harmonic of an electric field). The
principal problem generates a lot of particular ones.

The accelerating gradient assumed being fixed, the RF energy accumulated within the
channel is minimized, if the RF field is composed of only the electronsynchronous space
harmonic and counter-propagating harmonic of the same amplitude. In other words, the
field in the paraxial domain represents a homogeneous (in radial coordinate) standing wave
(in longitudinal coordinate). This field is kept by the metallic surface, the equation of which
(see (18) in Section 3) is obtained in [3|. This surface seems to be optimal.

Another "elementary” problem is the inverse spectral one: to find profiles of metallic
discs (Fig. 1) providing zero eigenvalue for Helmholtz type operator under homogeneous
boundary conditions. A constructive algorithm for this zero eigenvalue problem basing on
the method of discrete sources (MDS) [4] together with singular value decomposition (SVD)
technique [5] is presented in [6]. Several types of boundary profiles for amplifying waveguide
channels are considered. Optimal parameters for these profiles are obtained.

Concordance of a feeding wave flow of minimum amplitude with a standing wave of a
given amplitude in the paraxial domain is the next model problem. This coupling is provided
by a system of two neighboring channels with asymmetric grooves (Bragg reflectors). Optimal
parameters of neighboring grooves in the plane case are presented in [7]. There exists a
numerical procedure permitting to correct these parameters for the cylindrical case.

In [8] a scattering problem for two joint plane waveguides of different widths is considered.
Results concerning the same problem for a plane waveguide with protuberances will be
published in near future. Both problems allow exact solutions, so they give understanding
of MDS possibilities. This experience is useful for domains of rather arbitrary shapes.

This paper continues previous investigations. It deals with various elliptic problems
(boundary, inverse spectral, scattering) arising in supercollider simulation.

1. Elliptic problems arising in supercollider simulation.

In this paper we present three model problems arising in supercollider simulation. The
first is the classical boundary elliptic problem, the second is the inverse spectral one and
the last is the scattering one. For 3D azimuth-symmetrical case all problems are governed
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by a scalar equation of Helmholtz type for the azimuth component of a magnetic field H,
(wavelength A being normalized to 27, wave number £ is equal to unity):

1
AH, + (1 ~ ?_—2) H, =0, (1)

where A = (:—; + (.% + -};gd;) is Laplacian in the case of azimuth symmetry, r and z are
radial and axial (longitudinal) coordinates correspondingly.

In this case both the longitudinal component E. of an electric field and the radial one
E, are expressed in terms of the azimuth component of a magnetic field H,:

O H o
Ez — 8?“"# + ;HQ, (2)
a:—ﬂ?. 3)

The model domain (Fig. 2) is defined by periodicity and symmetry of the structure
(Fig. 1) in z coordinate: 0 < z < 7. This domain is an infinite strip (for the scattering
problem) 0 < r < oo or a finite rectangular (for other problems) 0 < r < 7, cut out by some
curve

R(r,z] =1 (4)

which is the equation of a longitudinal cross-section of an elementary disc.
The boundary conditions reflect:
1) equality to zero of the tangential component of an electric field on a metallic surface (4)

7\ 9R(_0H,\ OR[1O(rH,)]| :
(rot H‘p)r_ 0z ( 0z )+ or [ir‘ —5-?:—] T 5)

2) periodicity and symmetry of the structure in z coordinate

a@zy =D st z=50,4 (6)

3) equality to zero of the azimuth component of a magnetic field on the structure axis
= at r=0. (7)

One more boundary condition in r coordinate depends on the problem considered (see
Fig. 2). For the classical boundary problem it is

Hor=

o

1, Ty < i)
{+'0< Bl tmioreim; (8)

—-1l, mf2<m<z<T

where 2; and z, are the system parameters.
For the spectral problem it is a homogeneous condition

A Bl (ke
pm +;H.*9—G at.or=n. (9)
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As for the scattering problem, the boundary condition is defined as follows. Input (from
infinity) wave H;, is assumed to be a convergent cylindrical wave

Ho(r) = SHO(). (10)

The boundary condition (7) produces a regular part of a scattering solution — a divergent
cylindrical wave '
1 1
H s (1) = 21-H§ (7). (11)
Here, in (10)-(11), H", H® are the Hankel functions.
The boundary curve (4) generates an additional scattering wave H,,q4(r, 2), finding of
which is the essence of a scattering problem.
So, an unknown solution H, is sought as a sum of the input wave and the scattering
one:
H;s = Hpin+Hpscat.a (12)

while H 4, represents a sum of two components
H-psca.n = Hcpreg R Hpadd- (13)

For the sake of uniqueness, H,sa¢ must be divergent in infinity, i. e., it satisfies the radiation

condition
aHg: scat

or

Note, that for the scattering case it is necessary to use complex representation for electro-
magnetic fields.

1
T

— iHggcar = O ( ) at r=bo: (14)

2. Method of discrete sources together with singular value decomposition
technique.

To find a nontrivial solution of Eq. (1) under corresponding boundary conditions, we
use the MDS (method of discrete sources). An unknown wave H, is sought in the form

N
HL;J(T-J Z) :Hf,-:?in"'ngreg'J"ZdiG(nZspisCi)r (15)

'l'::].

where H,;, and H, e, are known functions (see (10)-(11)), G(r, z, p, ) is the Green function
of the operator (depending on the problem considered) in the envelope domain {0 < z < T,
0 <r <1y, 00} (see Fig. 2); p;, (; are the source coordinates (outside of a domain, where a
solution is sought); d; are the amplitudes of sources; NV is the number of sources used.

Substituting (15) into (5) for all collocation points (points, where the boundary condition
(5) is verified) on the curve (4), we arrive at a set of linear algebraic equations (SLAE) for
unknown values of source amplitudes d;:

N s b
zzldg'{[%(Tjazj}phcz')+}%G(Tj’zj’pf’c‘é) COS(Sj‘“ ( )
= 16

‘_%(Tj,z‘j,pé,géj sinﬁj} =P(r)eos B} F'=1N
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where tg 3 = 1(s)/2'(s), (r(s),2(s)) is the parametric form presentation of the boundary
curve (4); F(r) is the function depending on the problem considered, e.g., F'(r) = 0 in the
case of the spectral problem (boundary condition (9)).

A way of placement of source and collocation points is the problem of great importance.
We do not pay attention here to this problem so far as principal recipes are presented in our
previous publications [6], [8], [9]. We note only, that the primary idea is a uniform placement
for collocation points on the boundary, while source points are placed near the boundary
(outside of the domain considered) at the tops of isosceles triangles (other tops of triangles
are collocation points on the boundary) (Fig. 3).

At first sight, for boundary and scattering problems there is no difference what numerical
procedure for solving (16) is used. Originally we used LU method and had serious difficulties.
Understanding had become later, after consideration of the spectral problem (boundary
condition (9)). LU method is useless for a homogeneous SLAE (HSLAE). For this case there
exists a very powerful technique known as singular value decomposition (SVD). It is based
on the following theorem of linear algebra (we formulate this theorem for a real square
matrix only): any matrix A can be written as the product of an orthogonal matrix U, a
diagonal matrix W with positive or zero elements (the singular values), and the transpose
of an orthogonal matrix V':

A=UWVT, UTU=VTV=LI L)

The decomposition (17) can always be done, no matter how singular the matrix is, and it is
unique up to making the same permutations of the columns of U and V" and elements of .

SVD allows to solve effectively HSLAE in the case that a matrix is singular. A solution
is obtained immediately by means of SVD: any column of V" whose corresponding element
of W is zero yields a solution of HSLAE.

The reason for choosing of SVD technique for inhomogeneous SLAE is as follows. SVD
gives a clear diagnosis of the situation: how close to singular the matrix A is (that is our
case: we synthesize a resonator). Moreover, for the set of simultaneous equations Az = b
SVD explicitly constructs orthonormal bases for the nullspace (subspace of x that is mapped
to zero Ar = 0) and the range (subspace of b that can be "reached” by A, in the sense
that there exists some z which is mapped there) of a matrix. These bases are the columns
of V' whose same numbered elements of W are zero and the columns of U whose same
numbered elements of W are nonzero respectively. SVD diagnostics helps us to understand
some strange solutions we obtain for boundary value problem (1)—-(8) (see Section 3). That
is why we prefer SVD technique for solving (16).

3. Numerical results.

Preliminary results concerning the inverse spectral problem (1)—(7), (9) are published
in [6]. There presents a constructive algorithm for synthesis of resonance domains (to fit a
boundary of a domain to such a shape that produces zero eigenvalue for Helmholtz type
operator (1) under homogeneous boundary conditions). In particular, a resonance domain is
formed by means of the special line [6]

r? =r! — 4lnsinz, (18)

where 7, is the free parameter. This line forms an infinite resonator by itself, if o — oc (see
Fig.2). To construct a resonator for a finite value of ry, it is necessary to combine the line
(18) with a piece of a straight line (the less r5, the more the piece).
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Having fixed the boundary contour R(r,z) = 0, let us set some placement of source and
collocation points. Let this setting is characterized by the only parameter h which is a height
(one and the same) of isosceles triangles (Fig. 3). Using the MDS technique (Section 2), we
arrive at the HSLAE (16) (F(r) = 0 in the homogeneous case) whose matrix is a discrete
approximation of the boundary condition operator (5). SVD of this matrix produces singular
values which are functions of ry and h. We need to find zeroes of these functions (as much
as possible, but at least one). Here we describe results of our investigations in the case of
Z-symmetry.

A priori the inverse spectral problem (1)-(7), (9) must generate at least two zero
eigenvalues providing a symmetric (in z coordinate) solution and a skew-symmetric one
(cos z — the desirable standing wave). In fact, the discrete model (16)—(17) (MDS plus
SVD) produces both "symmetric” and “skew-symmetric” eigenvectors (symmetric and skew-
symmetric functions in (15)) corresponding to two smallest singular values of a matrix in
Eq. (16) (note, if some singular value tends to zero, it becomes close to eigenvalue). Moreover,
it is possible practically to equalize two smallest singular values by choosing the values of h
and 7, parameters. The more equalizing, the better situation is close to double zero eigenvalue
as well to a resonance. These results are demonstrated in Fig. 4, where R is the resonance
point corresponding to a double zero eigenvalue. In Fig. 5 corresponding structures of the
axial component E, of an electric field are shown.

Understanding of results for homogeneous problem (16) helps to explain some results
for boundary value problem (1)—(8). We had tried to fit boundary profile to synthesize a
resonator. The most strange result we had obtained was as follows.

In the case, when boundary profile is close to the resonance situation we observe strange
points (A, B, C in Fig. 6) in structures of electromagnetic fields which attract all solutions
(note, that numerical solutions depend on a source placement in the discrete model). SVD
gives the clue. Using this technique we expand full solution into the sum of the "nullspace”
solution (projection of the discrete solution onto the eigenvector corresponding to the zero
eigenvalue) and the “range” one (projection onto the subspace corresponding to other nonzero
eigenvalues). Zeroes of "nullspace” functions (Fig. 7) correspond to the strange points in
Fig. 6. It is clear now, that the values of functions in Fig. 6 at the strange points are
determined by the values of the "range” function (Fig. 7b) only which are nearly independent
of a source placement in the resonance case.

Thus, we have got a constructive algorithm basing on the MDS and SVD techniques
for synthesizing of resonance domains . The principal idea is to fit a boundary profile to a
shape providing zero singular value in the matrix of HSLAE (16). Fig. 8 demonstrates the
synthesized resonance profile and corresponding electromagnetic field structures.

Results concerning the scattering problem (1)-(7), (10)—(14) will be published in further
papers.

4. Conclusion.

In this paper we show the way providing positive results in synthesis of resonance electro-
dynamical systems. Following this way we have found out the MDS and SVD to be powerful
tools for solving of elliptic problems arising in supercollider simulation.
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Appendix. Figures.

Figure 1. Accelerating channel (RF energy accumulation cavity).

/ Er=0

A H 2 0

Figure 2. Model elliptic problems (boundary, spectral, scattering)
arising in supercollider simulation.
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Figure 4. Symmetric (1) and skew-symmetric (2) lines
for two smallest singular values of the matrix in Eq. (16).
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Figure 5. Axial component E, of an electric field corresponding to zero eigenvalues:
a), b) — skew-symmetric case; ¢), d) — symmetric case;
a), ¢) — radial cross-section: 1 —at z=0,2 —at 2 = m;
b), d) — axial cross-section at r = 1.

Figure 6. Numerical solutions at z = 0 for different source placements.
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Figure 7. Resonance solutions at z = 0 (a — "nullspace” solutions
for different source placements, b — "range” solution).
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Figure 8. Synthesized disk profile with resonance property (C,)
and corresponding electromagnetic field structure.

. Petelin M.I. Quasi-optical Collider Concept // Proceedings of the Advanced Accelerator Concepts, Tenth
Workshop, 2002, pp. 459-468.

. Petelin M. I. Quasi-optical Electron-positron Colliders? // Strong Microwaves in Plasmas, Proceedings
of the Int. Workshop / Ed. by A. G. Litvak, N. Novgorod, 2003.- V. 1.- pp. 82-89.

. Bogomolov Ya. L. and Yunakovsky A. D. Simulation of Electrodynamical Systems of Energy Accumulation.
// Modern methods in the theory of boundary problems, Proc. of Voronezh spring mathematical school
"Pontryagin readings-XI”, Voronezh, VGU, 2000.- Vol 1.- pp. 37-47.

4. Eremin Yu. A. and Sveshnikov A. G. Method of Discrete Sources in Electromagnetic Diffraction Problems.-

M.: izd-vo Moskovskogo universiteta, 1992

39



Ya. L. Bogomolov, E. 8. Semenov and A. D. Yunakovsky

5. Demmel J. W. Applied Numerical Linear Algeba.- Philadeiphia: S8IAM.- 1897. Demmel Dzh. Vychislitel'naya
lineinaya algebra. Teoriva i prilozheniva.- M.:Mir.- 2001, (in Russian)

6. Bogomolov Ya. L., Semenos E. 5. and Yunakovsky A. D. Singular value decomposition as a tool for solving
of spectral problems arisen in supercoliider simulation. // Proceedings of the International Seminar "Day
on Diffraction — 2003", Saint Petersburg: Universitas Petropolitana, 2003.- pp. 22-31.

7. Bogomolov Ya.L., Petelin ML, Tai M.L. and Yunakovsky A.D. Synthesis of Bragg Refiectors for Electron
Acceleration Structures with Quasi-Optical Radiation Feed. //sdzvestiva VUZov, Radiofizika, 2003.
Vol 46.- Nt 5-6.- p. 472-481,

8. Bogomoloy Ya.L. and Yunokouvsky A.D. Scattering of Electromagnetic Waves in a Collider Channels.

/ Noalinear Boundary Problems, Donetgk, 2003.- Vol. 13.- pp. 18-30.

9. Begomolov Ya. L. and Yunekovsky A. D. Scattering of Flectromagnetic Waves in a Channel with a
Step-like Boundary. // Proceedings of the International Seminar "Day on Diffraction — 20017 Saint
Petersburg: Universitas Petropolitana.- 2001.- pp. 26-37.

Institute of Applied Physics Received 7.09.2003
Russian Academy of Sciences

46 Uljanov Street,

603950, Nizhny Novgorod, Russia

bogomoldappl.sci-nnov.ru

semesfappl.sci-nnov.ru

yan@appli.sci-nnov.ru





